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Condensation vs phase ordering in the dynamics of first-order transitions
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The origin of the noncommutativity of the limitst→` andN→` in the dynamics of first-order transitions
is investigated. In the large-N model, i.e.,N→` taken first, the low-temperature phase is characterized by
condensation of the large-wavelength fluctuations rather than by genuine phase ordering as whent→` is taken
first. A detailed study of the scaling properties of the structure factor in the large-N model is carried out for
quenches above, at, and belowTc . Preasymptotic scaling is found and crossover phenomena are related to the
existence of components in the order parameter with different scaling properties. Implications for phase
ordering in realistic systems are discussed.@S1063-651X~97!01010-6#
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I. INTRODUCTION

The large-time behavior of a system quenched at or be
the critical point is characterized by scale invariance@1#. For
the equal time structure factor one has

C~kW ,t !5La~ t !F„kL~ t !…, ~1!

where

L~ t !;t1/z ~2!

is the characteristic length growing with time according to
power law andF(x) is the scaling function. The physic
behind Eq.~1! is quite simple and is basically due to th
degeneracy of the low-temperature state. After the quenc
exponentially fast process takes place leading to local e
librium. If multiple choice is available, correlated regions
the possible low-temperature phases are formed. From
point onward equilibration proceeds through the coarsen
of these correlated regions, whose characteristic sizeL(t)
grows according to Eq.~2!. The difference between quench
to Tc and belowTc is that in the first case the correlate
regions are fractal~Appendix A!, while in the second cas
they are compact. Apart from this, in both cases the equ
bration process becomes slow~if the system is infinite, equi-
librium is never reached! and after domains of the ordere
phases have formed, scaling behavior occurs since the
sidual time dependence is confined in the typical sizeL(t) of
the correlated regions.

The whole time evolution can be divided into a preasym
totic and an asymptotic regime, with a smooth transition
tween the two. The asymptotic regime displays universa
and is controlled by a fixed-point structure. The universa
classes are determined by features such as the presen
absence of a conservation law, the numberN of components

*Electronic address: castellano@na.infn.it
†Electronic address: corberi@na.infn.it
‡Electronic address: zannetti@na.infn.it
561063-651X/97/56~5!/4973~17!/$10.00
w

an
i-

at
g

i-

re-

-
-
y
y

or

of the order parameter, the dimensionalityd of space, and
the final temperatureTF of the quench. More precisely, o
the temperature axis there is an unstable fixed point at
critical temperatureTc and an attractive fixed point atTF50.
For the exponenta one has

a5H 22h for TF5Tc

d for TF,Tc ,
~3!

whereh is the usual exponent of the static critical pheno
ena. The exponentz coincides with the exponent of the dy
namical critical phenomena forTF5Tc . Instead, for any fi-
nal temperature belowTc , z52 for a nonconserved orde
parameter~NCOP!, while for a conserved order paramet
~COP! z53 whenN51 andz54 whenN.1. The scaling
function F(x) also displays universal features and is sen
tive to the space dimensionality through the presence (N,d)
or absence (N.d) of localized topological defects. By con
trast, in the preasymptotic regime the evolution of the syst
is not universal, as it depends on the initial conditions of
quench and on the actual value of the final temperature.

A complete theory of the process then should derive
scaling behavior from the basic equation of motion for t
order parameter and should be able to describe how the
tively simple universal asymptotic regime emerges out of
complexity of the preasymptotic regime. Ideally, one wou
like to have a manageable reference theory that account
least qualitatively, for the basic features of the process an
systematic procedure for the computation of the correcti
@2#. A scheme of this type is available for quenches toTc ,
where, despite the difficulty due to the lack of time trans
tional invariance, the field theoretical machinery develop
for critical phenomena is to a large extent applicable@3#.
Instead, for quenches belowTc the present status of theore
ical understanding is far from this standard. What we have
this case is the linear theory@4# for the very early stage of the
process, which applies only when initial conditions are
small that it is actually justified to employ a linear approx
mation, andad hoc late-stage theories@5#. Although these
late-stage theories have had much success in the comput
of the scaling functions, they are based on uncontrolled
4973 © 1997 The American Physical Society



n
S
h
g

av
f

ie
his
b

rd

ra
he

pr
y
ar

tly
ith
ed
ty
o

-

,

ca-
i-

al-

nts
is

the
ve
ec-

s in

4974 56C. CASTELLANO, F. CORBERI, AND M. ZANNETTI
proximations. Furthermore, the late-stage theories do
connect to the early-stage theory, if this is available at all.
there is no theoretical understanding of the complex p
nomenology arising at the breakdown of the early-sta
theory and leading to the onset of scaling@6#. Proposals for
the systematic improvement of the late-stage theory h
been put forth@7#, but as of now a first-principles theory o
phase-ordering processes is out of reach.

In this theoretical landscape a special position is occup
by the 1/N expansion. As applied to critical phenomena, t
technique provides a very clear instance of what is to
understood for a systematic theory: There is a lowest-o
analytically tractable approximation~the large-N model! that
captures the basic physics and there is an expansion pa
eter (1/N) that allows for the systematic computation of t
corrections. The scheme applies successfully also
quenches to the critical point@3# and, at first sight, it would
seem to be applicable as well to the phase-ordering
cesses. Indeed, in the large-N model one can solve exactl
@8# for the structure factor and one finds that the stand
scaling form~1! is obeyed for long times with a NCOP@9#.
In particular one findsz52 anda is given by Eq.~3! with
h50. The scaling functions can also be found explici
@10#. It is to be stressed that in the solution of the model w
N5` there are noad hochypotheses and the above outlin
picture of the asymptotic behavior with scaling, universali
and temperature fixed points is derived from the solution
the equation of motion.

However, when the model is solved with a COP@8,10#,
although the form~1! is obeyed witha52 and z54 for
TF5Tc , for the quenches toTF,Tc the more general mul
tiscaling form

C~kW ,t !;@L~kmL !~22d!/d#a~x!F~x! ~4!

is found, whereL(t);t1/4,km(t) is the peak wave vector
andx5k/km . The exponenta(x) is given by

a~x!5q1%w~x!, ~5!

with

FIG. 1. Spectrum of the multiscaling exponenta(x) for
quenches with a COP andd53.
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q5H 2 for 0,TF,Tc

0 for TF50,
~6!

%5H d22 for 0,TF,Tc

d for TF50.
~7!

Furthermore, when 0,TF,Tc the functionw(x) in Eq. ~5!
is given by

w~x!5H c~x! for x,x*

0 for x.x* ,
~8!

with x* 5A2 and

c~x!512~12x2!2, ~9!

while w(x)5c(x) for all values ofx whenTF50. Finally,

F~x!5H TF

x2 for 0,TF,Tc

1 for TF50.

~10!

Leaving aside for the moment the apparent formal compli
tion of Eqs.~4!–~10!, the important feature that is immed
ately evident is that, contrary to Eq.~3!, now there are three
distinct asymptotic behaviors forTF5Tc , 0,TF,Tc , and
TF50. ForTF5Tc the structure factor obeys standard sc
ing with a52 as in the NCOP case. Instead, forTF,Tc the
exponenta depends onx ~Fig. 1! and the scaling form~4!
involves two lengthskm

21(t) and L(t), which differ by a
logarithmic factor@8#

~kmL !45 lnLd1~22d!ln~kmL !. ~11!

The functional form ofa(x) is different for 0,TF,Tc and
TF50. This means thatTF5Tc andTF50 are both unstable
fixed points and in between there is a new line of fixed poi
for 0,TF,Tc . The temperature below the critical point
no longer an irrelevant variable.

If the 1/N expansion were a good systematic theory,
1/N corrections ought to produce only minor quantitati
changes on the picture outlined above. However, this exp

FIG. 2. Schematic representation of the relaxation processe
the systems withN finite andN5`.
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FIG. 3. Evolution ofa(x) for a NCOP andd53. ~a! TF@Tc and ~b! TF5Tc . Different curves refer to a sequence of time interva
growing exponentially with the label. In this and all other figures except Fig. 8, very early times are not shown for simplicity.
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tation has not been fulfilled by the work of Bray and Hum
yun @11#, who found that for quenches toTF50 and a COP
standard scaling of the form~1! is restored in systems with
any finite value ofN. The same result is very likely to appl
also to the quenches to 0,TF,Tc . Therefore, the main
qualitative features emerging in lowest order, such as
multiscaling behavior and the relevance of the tempera
fluctuations, are expected to be a peculiarity of the case w
N strictly infinite, disappearing as soon as higher-order c
rections are taken into account. In other words, the lim
N→` and t→` do not commute for quenches toTF,Tc .
In this paper we explore in some detail this phenomenon
we clarify what dynamical process is really described wh
the N→` limit is taken first. This helps to understand wh
correct use is to be made of the large-N model in this area of
nonequilibrium statistical mechanics.

The gross features of what goes on in the quenches be
Tc can be described with the help of Fig. 2. The pha
ordering process of a system with finiteN is represented by
-

e
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r-
s

d
n

w
-

path I connecting the disordered statesA to the ordered state
B. These latter states are mixtures of broken symme
states. Ifafter equilibrium has been established theN→`
limit is taken as depicted by path II, the system is broug
into a stateD that is the mixture of theN→` limits of each
one of the broken symmetry states. If instead theN→` limit
is takenbefore the quench, the process starts from a dis
dered stateC of the system with infinitely many componen
and the ensuing dynamical process does not connectC to D
along path III. As a matter of fact, the process depicted by
does not exist. Rather, the dynamical evolution follows p
IV leading to low-temperature statesE that are quite distinct
from D. In other words, the system withN5` supports two
different low-temperature phases whose realization depe
on the order of the limitst→` and N→`. The distinction
between these two phases is reminiscent of the differe
between the zero-field low-temperature states in the sphe
model@12# and in the mean spherical model@13#. In particu-
lar, statesE are very similar to the low-temperature states
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FIG. 4. Evolution ofa(x) for a NCOP andd53 for quenches toTF slightly above and slightly belowTc . Symbols and time intervals
are related as in Fig. 3.
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the ideal Bose gas, as it will be clarified in Sec. II. The po
to be stressed here is that in the static 1/N expansion statesA
andB are reached, respectively, from statesC andD, while
1/N corrections over statesE are not informative on statesB.
This clarifies why the 1/N expansion can be used fo
quenches toTc , but not belowTc , as an approximation for
processes with finite N.

What then is the use of the large-N model for growth
kinetics. There is an obvious intrinsic interest once it is cl
that even though the model does not describe a ph
ordering process of the usual type, the model is well defi
and describes the relaxation across a phase transition.
growth process generated in the time evolution can be s
ied in detail and produces nontrivial behavior. The outco
is quite interesting since by modulating the initial noise a
the final temperature, remarkable crossover phenomena
obtained. Here is where the model gives information also
systems with finiteN, even if it is not perturbatively close to
the phase-ordering processes. In fact, the phenomenolog
the structure factor exhibits features that are also found in
t

r
e-
d
he
d-
e
d
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n

of
e

preasymptotic behavior of systems with finiteN @14,15#.
Therefore, through the large-N model insight can be gaine
into the very complex time regime preceding the onset
scaling in realistic systems.

The paper is organized as follows. In Sec. II the mode
introduced, the noncommutativity of thet→` and N→`
limits is clarified, and the nature of the low-temperatu
phases in the large-N model is investigated. In Sec. III th
numerical solution for the structure factor is presented a
crossovers between different scaling behaviors are analy
by means of the multiscaling analysis. Conclusions are p
sented in Sec. IV.

II. LOW-TEMPERATURE PHASES

In the following we consider the relaxation dynamics
a system with anN-component order parameterfW (xW )5

„f1(xW ), . . . ,fN(xW )… that is initially prepared in a high-
temperature disordered state and is suddenly quenched
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FIG. 5. Evolution ofa(x) for a NCOP andd53 for quenches to 0,TF,Tc andTF50. Symbols and time intervals are related as in F
3.
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lower temperature. The evolution of the order paramete
governed by the time-dependent Ginzburg-Landau mode

]fW ~xW ,t !

]t
52~ i¹!p

dH@fW ,N#

dfW ~xW !
1hW ~xW ,t !, ~12!

wherep50 for a NCOP,p52 for a COP, andhW (xW ,t) is the
Gaussian white noise with expectations

^hW ~xW ,t !&50,

^ha~xW ,t !hb~xW8,t8!&52TF~ i¹!pdabd~xW2xW8!d~ t2t8!.
~13!

The free-energy functional is of the form

H@fW ,N#5E
V
ddxF1

2
~¹fW !21

r

2
fW 21

g

4N
~fW 2!2G , ~14!
iswhereV is the volume of the system,r ,0, andg.0. The
order-parameter probability distribution in the initial sta
can be taken to be of the form

P0@fW ,N#5
1

Z0
expH 2

1

2DE ddx fW 2~xW !J ~15!

describing the absence of correlations at high temperatu

^fa~xW ,0!fb~xW8,0!&5Ddabd~xW2xW8!. ~16!

As mentioned in the Introduction, if one wants to consid
the N→` limit, in order to determine the nature of the fin
equilibrium state attention must be paid to the order in wh
theN→` andt→` limits are taken. Let us consider first th
sequence limN→`limt→` . KeepingN finite, the equation of
motion ~12! induces the time evolution of the probabilit
distribution from the initial form~15! toward the Gibbs state
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FIG. 6. Evolution ofa(x) for a NCOP andd52 for quenches toTF50.3 andTF51026. Symbols and time intervals are related as
Fig. 3.
d

e

P@fW ,t,N#→Peq@fW ,N#5
1

Z
expH 2

1

TF
H@fW ,N#J . ~17!

In the infinite volume limitPeq@fW ,N# describes a disordere
pure state ifTF is aboveTc and theO(N) symmetrical mix-
ture of the broken symmetry states ifTF is belowTc . If we
now take theN→` limit ~path of type II in Fig. 1!, for
TF>Tc we obtain the pure phaseC

Peq@fW ,`#5
1

Z
expH 2

1

2TF
(

kW
~k21r 1gS!fW ~kW !•fW ~2kW !J ,

~18!

whereS is given by the self-consistency condition

S5
1

V(
kW

^fb~kW !fb~2kW !& ~19!
and b denotes the generic component. BelowTc , denoting
by mW the expectation value offW (xW ) in the broken-symmetry
state, theN→` limit D of the mixture is obtained

Peq@fW ,`#5E dmW r~mW !m@fW umW #, ~20!

where r(mW ) is the uniform probability density over th
sphere of radiusm and the pure statem@fW umW # is given by

m@fW umW #5d@~fW 2mW !•m̂#

3
1

Z
expH 2

1

2TF
(

kW
~k21r 1gm21gS'!

3fW '~kW !•fW '~2kW !J , ~21!

wherefW '5fW 2(fW •m̂)m̂. The quantitiesS' and m are de-
termined by the self-consistency relations
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FIG. 7. Evolution ofa(x) for a COP andd53 for quenches toTF slightly above and slightly belowTc . Symbols and time intervals ar
related as in Fig. 3.
n
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S'5
1

V(
kW

^f'b~kW !f'b~2kW !&, ~22!

r 1g~m21S'!50. ~23!

In the end, computing averages with the weight functio
~18! and ~20!, we find the well-known result of the large-N
model

^fb~kW !fb~2kW !&55
TF

k21r 1gS
for TF>Tc

TF

k2 1m2d~kW ! for TF,Tc

~24!

for the equilibrium structure factor in statesC and D. The
average value of the order parameter is given by
s

m252
r

gS Tc2TF

Tc
D , ~25!

with

Tc52
r ~d22!

gKdLd22
, ~26!

where L is a wave-vector cutoff and Kd5

@2d21pd/2G(d/2)#21. The d(kW ) term appearing in Eq.~24!,
below Tc , is the Bragg peak due to ordering in the lo
temperature phaseD.

Let us now consider the limits in the opposite order. T
ing theN→` limit at the outset amounts to taking the lim
on the equation of motion~12!, which becomes effectivel
linearized
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FIG. 8. Evolution ofa(x) for a COP andd53 for a quench toTF50: ~a! early times and~b! intermediate to late times. Different curve
refer to a sequence of time intervals growing exponentially with the label.
l-
it is
]fb~kW ,t !

]t
52kp@k21R~ t !#fb~kW ,t !1hW b~kW ,t !, ~27!

with

R~ t !5r 1gS~ t ! ~28!

and

S~ t !5
1

V(
kW

^fb~kW ,t !fb~2kW ,t !&. ~29!

Due to the linearity of Eq.~27!, the time-dependent probabi
ity distribution is Gaussian

P@fW ,t,`#5
1

Z~ t !
expH 2

1

2(kW
C21~kW ,t !fW ~kW !•fW ~2kW !J ,

~30!
with

C~kW ,t !5^fb~kW ,t !fb~2kW ,t !&. ~31!

Taking next thet→` limit

P@fW ,t,`#→Qeq@fW ,`#

5
1

Z
expH 2

1

2(kW
Ceq

21~kW !fW ~kW !•fW ~2kW !J ,

~32!

we obtain a Gaussian state for any final temperature and
legitimate to ask whether there is still a phase transition.

From Eq. ~27! it is straightforward to obtain@10# the
equation of motion for the structure factor

]C~kW ,t !

]t
522kp@k21R~ t !#C~kW ,t !12kpTF , ~33!
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FIG. 9. Evolution ofa(x) for a COP,d53, andTF51: ~a! zero initial fluctuations and~b! large initial fluctuations. Symbols and tim
intervals are related as in Fig. 3.
e

ys-

-

which, after equilibration is reached, yields

Ceq~kW !5
TF

k21j22
~34!

with a NCOP and

Ceq~kW !5H C~kW50,t50! for kW50

TF

k21j22
for kWÞ0

~35!

with a COP, where limt→`R(t)5j22 is the inverse square
equilibrium correlation length. From Eq.~28!

j225r 1
gTF

V (
kW

1

k21j22
, ~36!
where the sum extends over all values ofkW for a NCOP and
overkWÞ0 for a COP. We now analyze Eq.~36! in the NCOP
case, referring to Appendix B for the modifications in th
argument required by the conservation law. WithV finite the
solution of Eq.~36! for j is finite for any temperature. As
expected, there is no phase transition in a finite volume s
tem. In the infinite volume limit Eq.~36! becomes

j225r 1gTFB~j22!1
gTF

Vj22
, ~37!

where the functionB(x), defined by

B~x!5E ddk

~2p!d

1

k21x
, ~38!

is a monotonical decreasing function ofx with a maximum
value at B(0)5KdLd22/(d22). In writing Eq. ~37! the
kW50W contribution to the sum~36! has been explicitly sepa
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FIG. 10. Evolution ofa(x) for a COP,d53, andTF51026: ~a! zero initial fluctuations and~b! large initial fluctuations. Symbols and
time intervals are related as in Fig. 3.
-

is
rder
rated out. Definingg25TF /Vj22 and introducing the tem
peratureTc52r /gB(0), which coincides with Eq.~26!, Eq.
~37! can be rewritten as

1

g
j225F r

gS Tc2TF

Tc
D1g2G1TF@B~j22!2B~0!#, ~39!

with the solution~Appendix B!

j22.0, g250 for TF.Tc ,

j2250, g250 for TF5Tc , ~40!

j2250, g252r /gS Tc2TF

Tc
D for TF,Tc ,

which shows the existence of the phase transition atTc . For
the structure factor this implies
Ceq~kW !55
TF

k21j22
, TF>Tc

TF

k2 1g2d~kW !, TF,Tc ,

~41!

and taking into account the form~40! of g2, Eq. ~41! is
identical to Eq.~24!. Thus, as far as the structure factor
concerned, the same result is found irrespective of the o
of the limits t→` and N→`. However, comparing the
states,Qeq@fW ,`# coincides withPeq@fW ,`# aboveTc , but
not below, where

Qeq@fW ,`#5
1

A2pg2V
expH 2

f2~0!

2g2V
J

3
1

Z
expH 2

1

2(
kWÞ0

Ceq
21~kW !fW ~kW !•fW ~2kW !J .

~42!
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FIG. 11. Evolution ofa(x) for a COP,d52, andTF51026: ~a! zero initial fluctuations and~b! large initial fluctuations. Symbols and
time intervals are related as in Fig. 3.
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This is a state exactly of the same form as the zero-fi
low-temperature state in the mean spherical model, w
stateD is a mixture as in the spherical model@16#.

Thus, despite the formal similarity, the Bragg peaks
Eqs. ~24! and ~41! have different physical meanings. In th
former case, it signals the formation of a mixture of order
states, while in the latter it is due to the macroscopic grow

of the kW50W term in the sum~36!. What we have here is a
low-temperature phase obtained by condensation of the

tuations atkW50W , as in the ideal Bose gas, withCeq(kW50W )
playing the role of the zero-momentum occupation numb

Finally, notice that withd52 the critical temperature~26!
vanishes. Hence all states withTF.0 are disordered state
and the limitst→` andN→` commute for the quenches t
any finite final temperature. Conversely,TF50 is not a criti-
cal temperature; rather it is an ordering temperature. Th
fore, the quench toTF50 is an ordering process and th
limits are not supposed to commute in this case.
ld
le

d
h

c-

r.

e-

III. SCALING BEHAVIORS

In this section we investigate the time evolution of t
structure factor by solving numerically the equation of m
tion ~33!. It is convenient to comment beforehand on t
structure of this solution. Integrating Eq.~33!, the structure
factor can be written as the sum of two contributions

C~kW ,t !5C0~kW ,t !1CT~kW ,t !, ~43!

with

C0~kW ,t !5DexpH 22kpE
0

t

ds@k21R~s!#J ~44!

and

CT~kW ,t !52TFkpE
0

t

dt8expH 22kpE
t8

t

ds@k21R~s!#J .

~45!
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FIG. 12. Evolution ofa(x) for the solution of the Bray-Humayun model withN5100,d52, andTF50: ~a! small initial fluctuations and
~b! large initial fluctuations. Different curves refer to a sequence of time intervals growing exponentially with the label.
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The asymptotic behavior is analytically accessible and it
been derived in detail in Ref.@10#. For quenches toTF<Tc
with a NCOP, the long-time behavior is given by

C0~kW ,t !5DLv f 0~x!, ~46!

CT~kW ,t !5TFL2f T~x!, ~47!

with L(t)5t1/2, x5kL, and

v5H 42d for TF5Tc

d for TF,Tc ,
~48!

f 0~x!5e2x2
, ~49!

f T~x!5E
0

1

dy~12y!2v/2e2x2y. ~50!
sNotice that both contributions are in the scaling form~1!

with CT(kW ,t) dominating in the quenches toTc , while
C0(kW ,t) dominates forTF,Tc . One may go one step furthe
regarding the order parameter as the sum of two contr
tionsfW 5sW 1zW whose correlations account for the two piec
in the structure factorC0(kW ,t)5^sbsb&,CT(kW ,t)5^zbzb&,
and ^sbzg&50. Therefore, forTF,Tc a sort of two-fluid
picture of the quench is obtained, with the condensatesW and
the thermal fluctuationszW having a distinct individuality due
to the different scaling properties. Notice that the irrelevan
of the thermal fluctuations is due tosW dominating zW and
obeying the zero-temperature equation of motion.

With a COP there is additional structure since the therm
contribution itself contains two different pieces

CT~kW ,t !5H C,~kW ,t ! for k,x* km~ t !

C.~kW ,t ! for k.x* km~ t !,
~51!
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FIG. 13. Evolution ofa(x) obtained in Ref.@14# by simulation of a system withN51, d52, andTF50: ~a! small initial fluctuations
and ~b! large initial fluctuations. Different curves refer to a sequence of time intervals growing exponentially with the label.
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with the asymptotic behaviors

C0~kW ,t !5DLrc~x!, ~52!

C,~kW ,t !5
TF

x2
L21rc~x!, ~53!

C.~kW ,t !5
TF

x2
L2, ~54!

r5H 0 for TF5Tc

d22 for 0,TF,Tc

d for TF50.

~55!

For simplicity, in writing Eqs.~52!–~54! we have neglected
the logarithmic difference betweenL(t) and km(t), setting
x5kL and L(t)5t1/4. New behavior arises in the regio
0,TF,Tc , where there is a sharp distinction between w
 t

happens forx,x* and forx.x* . In the first caseC,(kW ,t)
dominates overC0(kW ,t), while in the second caseC.(kW ,t)
dominates overC0(kW ,t). Therefore, with a COP we are led t
regard the order parameter as the sum of three contribut
fW 5sW 1zW ,1zW . , which again are characterized by distin
scaling properties and whose correlations are responsible
spectively, forC0(kW ,t), C,(kW ,t), and C.(kW ,t). The re-
markable qualitative difference with the NCOP case is t
now the condensate also is of thermal origin because
Bragg peak is formed byzW , . Hence the temperature is no
an irrelevant variable. Furthermore, the thermal fluctuatio
zW . that obey standard scaling as time goes on propa
from the large wave vectors toward the small wave vecto
following a pattern that is important, as we shall see belo
for understanding what happens in the realistic systems.
nally, thesW contribution that was responsible for the conde
sate with a NCOP here is subdominant, but it can give ris
interesting preasymptotic behaviors ifD and TF are appro-
priately chosen.
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In the numerical study of the structure factor, we sh
devote particular attention to the transition from preasym
totic to asymptotic features. This we do both for the NCO
and COP withd53 andd52. Parameters of the quench a
the final temperatureTF and the strengthD of the fluctua-
tions in the initial state~15!. In particular, we will consider
the two casesD50 ~small D) and D52r /g ~large D),
whereA2r /g is the equilibrium value of the order paramet
at zero temperature. The final temperature of the quenc
important in two respects. First of all, forTF.Tc the corre-
lation lengthj is finite, while forTF<Tc it is infinite. This is
important because the general structure of the time evolu
is determined by the relation between a microscopic len
L0 and the correlation lengthj in the final equilibrium state.
The initial fast transient, with no scaling, lasts up to so
time t0. At this point equilibrium is established over th
length scaleL0 and if this is of the order of magnitude ofj,
final equilibrium is reached over the whole system as w
Instead, if j@L0, a second regime is entered@17#, during
which the scaling relations~1! and~2! hold. This lasts up to
the time t1 such thatL(t1).j, when global equilibrium is
again established. Clearly, ifj is infinite, equilibrium is
never reached and the scaling regime lasts forever. The
ond important feature involving the final temperature is th
while for TF>Tc only the thermal fluctuations grow, fo
TF,Tc there is growth of both the condensate and therm
fluctuations.

A. Multiscaling analysis

The interplay of all these elements produces a rich var
of behaviors that can be efficiently monitored through
multiscaling analysis. This works as follows. Let us assu
that the structure factor can be written in the general mu
scaling form

C~kW ,t !5@L1~ t !#a~x!F~x!, ~56!

with x5kL2(t) andL1(t) andL2(t) two lengths. The func-
tions a(x) andF(x) are to be determined. In order to che
on the assumption, the time axis is divided in interv
(t i ,t i1t i), which in practice may also be of variable leng
t i , and within each interval the logarithm ofC(kW ,t) is plot-
ted against the logarithm ofL1(t) for a fixed value ofx. By
measuring the slope and the intercept of the plota(x,t i) and
F(x,t i) are obtained. The procedure is then repeated for
ferent values ofx and over different time intervals. Ifa(x,t i)
andF(x,t i) do not depend ont i the assumption~56! is cor-
rect and scaling holds. Specifically, standard scaling is
case whereL1(t)5L2(t) anda(x) does not depend onx. In
the case of multiscalinga(x) does depend onx and the two
lengthsL1(t) andL2(t) differ by a logarithmic factor. Con-
versely, ifa(x,t i) andF(x,t i) do depend ont i , scaling does
not hold. Notice that in the case that equilibrium has be
reached, the disappearance of the time dependence show
asa(x,t i)[0. In the following we shall not be interested
the determination ofF(x) and we shall concentrate ona(x).

As an example, consider the quench toTF50. With a
NCOP the exact form of the structure factor is given by@8#

C~kW ,t !5Dexp$2@Q~ t !1~kL!2#%, ~57!
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whereQ(t) is a function of time andL(t)5t1/2. Hence we
have the natural choiceL2(t)5L(t) and, using Eq.~56!,

a~x,t !52
Q~ t !

lnL1~ t !
, ~58!

which shows that if there is scaling it is of the standard ty
This occurs for long times, whereQ(t)52dlnL(t) suggests
to take L1(t)5L2(t)5L(t), yielding a(x,t)5d. Con-
versely, for short times, ifD is small enough to allow for the
application of the linear approximation, we haveQ(t)52rt
and there is no scaling since the time dependence does
drop out

a~x,t !52
2rt

lnL~ t !
. ~59!

With a COP instead, the exact form of the structure facto
given by @8#

C~kW ,t !5Dexp~kmL !4c~k/km!, ~60!

where km(t) is the peak wave vector,L(t)5t1/4, and c is
given by Eq.~9!. ChoosingL2(t)5km

21(t), we find

a~x,t !5
@km~ t !L~ t !#4c~x!

lnL1~ t !
, ~61!

which shows that thex dependence cannot be eliminated a
therefore that scaling can only be of the multiscaling typ
This occurs for long times withL1(t)5(km

22dL2)1/d, yielding

a~x,t !5dc~x!. ~62!

Using Eq.~11!, the two lengthsL1(t) andL2(t) are related
by L1(t)/L2(t);(lnL)2/d. Conversely, in the very early stag
where the linear approximation holdsL2(t)5km

215A22/r is
time independent andL1;t1/2d, yielding

a~x,t !;
t

lnt
c~x!, ~63!

which displays the absence of scaling through a tim
dependent prefactor in front ofc(x).

B. Evolution of a„x,t…

In the following we illustrate the evolution ofa(x,t) ob-
tained numerically over a sequence of time intervals, w
r 521 andg51.

1. NCOP d53

Let us begin with a NCOP in three dimensions. The cr
cal temperature is finiteTc52p and the exponenta is ob-
tained settingL1(t)5L2(t) and extracting this length from
the inverse of the halfwidth of the structure factor. Accordi
to the general outline presented at the beginning of this s
tion, we expect to detect the establishment of equilibrium
TF.Tc through the vanishing ofa and the scaling behavio
lasting indefinitely forTF<Tc , through the disappearance o
the time dependence around a nonvanishing value ofa. This
is clearly illustrated in Fig. 3, wherea is plotted for a quench
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well aboveTc with TF520 and for a quench toTc . In the
first case the lines rapidly collapse ona50, while in the
second case the collapse is ona52. It is then interesting to
consider the case of a final temperature slightly aboveTc ,
which corresponds to a large but finitej. Also in this casea
is expected to collapse eventually ona50; however, as long
asL(t) is large but smaller thanj, one expects to observe
behavior similar to the one in the quench toTc . Indeed, this
is what happens in Fig. 4~a!, obtained by plottinga for
TF56.35. After the initial transient there is a collapse
a52, revealing critical scaling. However, this does not la
indefinitely as in the case of the quench toTc , but it lasts for
the time necessary forL(t) to catch up withj. After this a
new transient sets in and the eventual collapse on the e
librium valuea50 takes place. ForTF,Tc the behavior of
a is quite similar to the one forTF5Tc , since in both cases
j5`. The only difference is that the asymptotic behav
produces collapse on the valuea5d53. For TF slightly
below Tc , e.g., TF56.20 in Fig. 4~b!, there is crossove
from critical scaling witha52 to the final value witha53.
In general, the asymptotic behavior for 0,TF,Tc and
TF50 is the same~Fig. 5!, confirming the irrelevance o
thermal fluctuations. In all quenches considered, the va
tion of the sizeD of initial fluctuations does not produc
significant differences.

2. NCOP d52

In two dimensions the critical temperature~26! vanishes.
So, for anyTF.0 one should observe a behavior fora simi-
lar to the one obtained withd53 andTF.Tc . This is the
case for quenches with a final temperature well above z
where behaviors ofa very close to the one in Fig. 3~a! are
obtained. Similarly, for the quench toTF50 the same be-
havior as in Fig. 5~b! is obtained, except that now the line
collapse ona5d52.

A case to be considered separately is whenTF is finite but
very close to zero. Figure 6, corresponding toTF50.3 and
TF51026, displays an intermediate scaling behavior w
a52 preceding the eventual collapse on the equilibri
valuea50. At first sight this looks like the behavior of Fig
4~a! in the quench to a final temperature slightly aboveTc .
However, the interpretation is more subtle since what
growing here, as long asL(t),j, are not the critical fluctua-
tions but the condensate. The distinction between conde
tion and critical behavior is actually impossible to make w
a NCOP on the basis of the value ofa since withd52 in
both casesa52. This remark will become clear with a CO
because in that case the growth of the critical fluctuation
associated with standard scaling, while the growth of
condensate gives rise to multiscaling.

3. COP d53

We now move on to the case of a COP with both sm
and large initial fluctuations. As discussed above,a(x,t) is
extracted by definingx5k/km , where km(t) is the peak
wave vector, and plotting lnC vs lnL1(t) with
L1(t)5(km

22dL2)1/d andL(t)5t1/4. For quenches toTF>Tc

the behavior ofa(x,t) essentially follows the same patte
as in the NCOP case. Apart from some differences in
time-dependent transients, again forTF.Tc and forTF5Tc
t
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curves collapse, respectively, ona50 anda52. In Fig. 7
we illustrate what happens in the quench slightly above@Fig.
7~a!# and slightly below@Fig. 7~b!# Tc . In both cases there is
a preasymptotic standard scaling behavior witha52 due to
the critical point in the neighborhood, followed by the incip
ent crossover toward the asymptotic behavior. AboveTc this
is a50, as revealed bya deviating downward, while below
Tc the deviation occurs upwardly, forx,x* , toward the
asymptotic form of Fig. 1.

Where the difference between the NCOP and COP
comes remarkably evident is in the quenches well belowTc .
Let us first consider~Fig. 8! TF50. After a time-dependen
transient@Fig. 8~a!#, which for smallD in the early stage is
well described by Eq.~63!, the curves ofa(x,t) collapse
@Fig. 8~b!# on the limiting curve~62! depicted in Fig. 1.
Instead, forTF51 ~Fig. 9!, the collapse occurs on the finite
temperature asymptotic form of Fig. 1, with minor diffe
ences in the transient due to the size ofD. However, going to
a temperature much lower but finite~Fig. 10!, while for
D50 @Fig. 10~a!# a follows the same pattern as in Fig. 9, th
behavior in Fig. 10~b! with D51 is drastically different.
What we have here is multiscaling as in the quench toTF50
for x,x* and standard scaling witha52 for x.x* . All
these features can be accounted for on the basis of the
cussion made at the beginning of this section. As long asTF
is sufficiently large orD small, as in Figs. 9 and 10~a!, only
C,(kW ,t) and C.(kW ,t) contribute toa(x,t) producing the
characteristic behavior of Fig. 1. However, whenD is finite
andTF small enough, there can be a sizable interval of ti
during whichC0(kW ,t) dominates overC,(kW ,t), for x,x* ,
producing the scaling pattern in Fig. 10~b!. This behavior is
preasymptotic and eventually the crossover to the patter
Fig. 9 takes place asC,(kW ,t) grows large enough to over
takeC0(kW ,t). In our numerical solution the computation wa
not run long enough to actually detect this crossover, but
clear that by modulating the parameters of the quenchD and
TF the crossover time can be varied at will.

4. COP d52

It is now interesting to see how this variety of behaviors
affected by pushing the critical temperature to zero in t
dimensions. The difference with respect to the previous c
is that now the line of fixed points in betweenTF50 andTc
has disappeared and with it, supposedly, also the assoc
asymptotic behavior. Actually, only the fixed point atTF50
has survived. Thus we should observe either the relaxatio
equilibrium for TF.0 or the multiscaling behavior fo
TF50. Indeed, for temperatures such asTF510 the collapse
on a50 is observed. Similarly, the quench toTF50 pro-
duces a behavior identical to the one in Fig. 8, except that
peak value ofa is given by 2 in place of 3. The interestin
differences arise when quenches to small but finiteTF are
considered. In fact, whenTF is low j is large and an inter-
mediate scaling regime preceding the final equilibration
expected. The question is what it will be like. ForTF51026

~Fig. 11! and D50 there is standard scaling witha52,
while for D51 the pattern is identical to the one in Fig
10~b!, except for the obvious modificationa(x51)5d52.
The first observation is that these are preasymptotic beh
iors since eventuallya must vanish. The second is that th
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phenomenology can be understood regarding, as long
L(t),j, the structure factor as made up of the three con
butions ~52!–~54!. Namely, as long asL(t),j, there is
growth of the condensate and of thermal fluctuations, a
the quench below the critical point. Thermal fluctuations
clearly due toTF.0, while the growth of the condensa
originates from the underlying fixed point being atTF50.
The net result is that the intermediate scaling behavior w
D50 is due toC,(kW ,t) andC.(kW ,t), which scale both like
L2 sincer vanishes whend52. Instead, withD51 we are
confronted again with a situation where, in the time of t
computation,C0(kW ,t) dominates overC,(kW ,t) producing the
pattern of Fig. 11~b!. As a matter of fact, this is a pre
preasymptotic scaling behavior, since whenC,(kW ,t) over-
takesC0(kW ,t) a behavior of the type in Fig. 11~a! is expected
to occur before the eventual relaxation to a vanishinga.

IV. CONCLUSION

In this paper we have investigated the origin of the no
commutativity of the limitst→` andN→` in the dynamics
of the first-order transitions. The main result is that when
N→` limit is taken first the underlying phase transitio
which we have called condensation, is qualitatively differe
from the usual process of ordering obtained with the limits
the opposite order. In particular, condensation in conjunc
with a COP gives rise, for reasons that are not yet clear
two phenomena that are strikingly different from what o
has in phase ordering, namely,~i! multiscaling and~ii ! rel-
evance of the thermal fluctuations. We then proceeded t
extensive investigation of the scaling properties of the str
ture factor in the large-N model for quenches to a final tem
perature greater than, equal to, or lower thanTc . We have
found a rich variety of behaviors, which can be studied
great detail through the multiscaling analysis. Particula
interesting is the existence of preasymptotic scaling, wh
can be explained through the competition between differ
components of the order parameter with distinct scal
properties.

Even though it is quite clear that the large-N model is not
perturbatively close to the phase-ordering processes in
istic systems, in concluding the paper we wish to elabor
on the connections that nonetheless exist. In order to do
we use the Bray-Humayun~BH! model @11# as an interme-
diate step. As mentioned above, in this model the struc
factor for the quenches toTF50 with a COP displays stan
dard scaling for any finite value ofN. The discussion in Sec
III on the behavior ofa in the quenches toTF51026 helps
to understand how this comes about. By integrating forma
the equation of motion, the BH structure factor can be w
ten as the sum of two contributions

C~kW ,t !5C0~kW ,t !1CN~kW ,t !, ~64!

whereC0(kW ,t) is given by Eq.~44!, while

CN~kW ,t !52
2

N
kpE

0

t

dt8R~ t8!
C0~kW ,t !

C0~kW ,t8!
D~kW ,t8!, ~65!
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D~kW ,t !5E ddk1

~2p!d

ddk2

~2p!d C~kW2kW1 ,t !C~kW12kW2 ,t !C~kW2 ,t !,

~66!

contains the nonlinearity andR(t) is given by Eqs.~28! and
~29! @14#. Although Eq. ~43! refers to a quench toTF.0
with N5` and Eq.~64! to a quench toTF50 andN finite,
the mechanism regulating the competition between the
terms is the same. In particular, in both casesC0(kW ,t) can
compete with the second term only forx,x* . Bray and
Humayun have shown thatCN(kW ,t) asymptotically obeys
standard scaling witha5d. It is then clear that by choosing
D andN properly there may be a preasymptotic regime d
ing which C0(kW ,t) dominates forx,x* , much in the same
way as in Sec. IIIC0(kW ,t) was found to dominate ove
CT(kW ,t). Here 1/N plays a role similar to that ofTF and the
crossover time depends on bothD and N @11,14#. With
N5100 andd52 ~Fig. 12! a behavior fora(x,t) is obtained
that is practically the same of that in Fig. 11. In order
complete the picture, we reproduce in Fig. 13 the behavio
a(x,t) for the scalar system obtained in Ref.@15# by the
simulation of Eq.~12! with N51 andd52. Again the same
pattern is found, revealing that the same mechanism is o
ating also in this case. Therefore, one may conclude that
behavior of the large-N model associated withC0(kW ,t) de-
scribes what happens in the preasymptotic regime also in
phase-ordering processes over the shrinking range of w
vectors withk,x* km(t). In other words, the asymptotic re
gime is preceded by a time regime where phase orde
over the short length scale seems to coexist with conde
tion over the large length scale. This is not surprising fo
NCOP since correlations are established over regions of
L(t) and the statistics can be expected to become Gaus
over distances larger thanL(t). For a COP it is less straight
forward, although the occurrence of Gaussian statistics
large length scales can be detected much more easily thro
the appearance of multiscaling behavior.

APPENDIX A

From Eq.~1! the real-space scaling form of the correlatio
function is given by

G~rW,t !5r a2dg„r /L~ t !…, ~A1!

whereg(x) is the scaling function andg(0) is a finite quan-
tity. For r !L(t) Eq. ~A1! gives the equilibrium decay of the
correlation function

Geq~rW !;r a2d. ~A2!

On the other hand, the correlation function on a fractal@18#
decays as

Geq~rW !;r 2~D2d!, ~A3!

whereD is the fractal dimensionality. Comparing Eq.~A3!
with Eq. ~A2!, the fractal dimensionality of the correlate

regions is given byD5 1
2 (a1d) and using Eq.~3!,
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D5H 1

2
~21d2h! for TF5Tc

d for TF,Tc .

~A4!

APPENDIX B

1. NCOP

Equation~37! can be rewritten as

j225r 1gTFB~0!1
gTF

Vj22
1gTF@B~j22!2B~0!#

~B1!

and usingr 1gTcB(0)50,

j22

g
5c1TF@B~j22!2B~0!#, ~B2!

where

c52
r

gS TF2Tc

Tc
D1

TF

Vj22
. ~B3!

Since @B(j22)2B(0)# is a nonpositive monotonical de
creasing function, there is a positive solution of Eq.~B2! for
c.0, a vanishing solution forc50, and no solution for
c,0. ForTF,Tc the quantityc cannot be positive becaus
in that casej22 would be positive and the second term
the right-hand side of Eq.~B3! would vanish in the infinite-
volume limit, producingc,0. Therefore,c can only vanish,
implying
F

s
i-

-

lim
V→`

TF

Vj22
5g252

r

gS Tc2TF

Tc
D . ~B4!

2. COP

With a conserved order parameter, Eq.~36! is replaced by

j225r 1
gTF

V (
kWÞ0

1

k21j22
, ~B5!

which allows for a solutionj22.2kmin
2 , wherekmin;V21/d

is the minimum value of the wave vector. For

TF, T̃c52
r

gF 1

V(
kWÞ0

1

k2G21

~B6!

the solution is negative2kmin
2 ,j22,0. In the infinite vol-

ume limit T̃c→Tc and j22→2kmin
2 . Thus, rewriting Eq.

~B5! as

j225r 1gTFB~j22!1
gTF

V~kmin
2 1j22!

, ~B7!

we can analyze this equation exactly as in the NCOP c
obtaining forTF,Tc the analog of Eq.~B4!

lim
V→`

TF

V~kmin
2 1j22!

5g252
r

gS Tc2TF

Tc
D . ~B8!
ac
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