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Condensation vs phase ordering in the dynamics of first-order transitions

C. Castelland* F. Corberi*?"and M. Zannetfi*
Listituto Nazionale di Fisica della Materia, Unitdi Salerno and Dipartimento di Fisica,
Universitadi Salerno, 84081 Baronissi, Salerno, Italy
“Dipartimento di Scienze Fisiche, Universit Napoli, Mostra d’Oltremare, Padiglione 19, 80125 Napoli, Italy
(Received 27 March 1997

The origin of the noncommutativity of the limits—o andN— o in the dynamics of first-order transitions
is investigated. In the largd- model, i.e.,N—o taken first, the low-temperature phase is characterized by
condensation of the large-wavelength fluctuations rather than by genuine phase ordering s whisttaken
first. A detailed study of the scaling properties of the structure factor in the Mrgedel is carried out for
guenches above, at, and beldw. Preasymptotic scaling is found and crossover phenomena are related to the
existence of components in the order parameter with different scaling properties. Implications for phase
ordering in realistic systems are discusd&il063-651X%97)01010-6

PACS numbg(s): 64.60.Ak, 05.70.Fh, 64.60.My, 64.759

[. INTRODUCTION of the order parameter, the dimensionalityof space, and
the final temperatur@. of the quench. More precisely, on
The large-time behavior of a system quenched at or belowhe temperature axis there is an unstable fixed point at the
the critical point is characterized by scale invariafite For  critical temperaturd . and an attractive fixed point @ =0.

the equal time structure factor one has For the exponen& one has
C(KD=L*OF(KL(D)), M o @
d for Te<T,,
where

where 7 is the usual exponent of the static critical phenom-
L(t)~t? (2 ena. The exponert coincides with the exponent of the dy-
namical critical phenomena fare=T.. Instead, for any fi-
is the characteristic length growing with time according to anal temperature below., z=2 for a nonconserved order
power law andF(x) is the scaling function. The physics parametefNCOBP), while for a conserved order parameter
behind Eq.(1) is quite simple and is basically due to the (COP z=3 whenN=1 andz=4 whenN>1. The scaling
degeneracy of the low-temperature state. After the quench aoinction F(x) also displays universal features and is sensi-
exponentially fast process takes place leading to local equtive to the space dimensionality through the preseihte @)
librium. If multiple choice is available, correlated regions of or absenceN>d) of localized topological defects. By con-
the possible low-temperature phases are formed. From thatast, in the preasymptotic regime the evolution of the system
point onward equilibration proceeds through the coarsenings not universal, as it depends on the initial conditions of the
of these correlated regions, whose characteristic i2¢  quench and on the actual value of the final temperature.
grows according to Eq2). The difference between quenches A complete theory of the process then should derive the
to T, and belowT, is that in the first case the correlated scaling behavior from the basic equation of motion for the
regions are fractafAppendix A), while in the second case order parameter and should be able to describe how the rela-
they are compact. Apart from this, in both cases the equilitively simple universal asymptotic regime emerges out of the
bration process becomes sldifvthe system is infinite, equi- complexity of the preasymptotic regime. Ideally, one would
librium is never reachedand after domains of the ordered like to have a manageable reference theory that accounts, at
phases have formed, scaling behavior occurs since the réeast qualitatively, for the basic features of the process and a
sidual time dependence is confined in the typical &i(#9 of  systematic procedure for the computation of the corrections
the correlated regions. [2]. A scheme of this type is available for quenchesTtq
The whole time evolution can be divided into a preasymp-where, despite the difficulty due to the lack of time transla-
totic and an asymptotic regime, with a smooth transition betional invariance, the field theoretical machinery developed
tween the two. The asymptotic regime displays universalityfor critical phenomena is to a large extent applicaf8¢
and is controlled by a fixed-point structure. The universalitylnstead, for quenches beldly, the present status of theoret-
classes are determined by features such as the presenceiaal understanding is far from this standard. What we have in
absence of a conservation law, the numNesf components this case is the linear theol] for the very early stage of the
process, which applies only when initial conditions are so
small that it is actually justified to employ a linear approxi-

*Electronic address: castellano@na.infn.it mation, andad hoc late-stage theoriegs]. Although these
"Electronic address: corberi@na.infn.it late-stage theories have had much success in the computation
*Electronic address: zannetti@na.infn. it of the scaling functions, they are based on uncontrolled ap-
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FIG. 2. Schematic representation of the relaxation processes in
the systems withN finite andN=co.

proximations. Furthermore, the late-stage theories do not _ 2 forO0<Te<T, ®)
connect to the early-stage theory, if this is available at all. So a= 0 forTe=0,

there is no theoretical understanding of the complex phe-

nomenology arising at the breakdown of the early-stage d—2 forO<Te<T,

theory and leading to the onset of scali. Proposals for = { d forTe=0 (7)

the systematic improvement of the late-stage theory have
been put fortt{7], but as of now a first-principles theory of Eyrthermore, when @ T-<T, the functione(x) in Eg. (5)

phase-ordering processes is out of reach. is given by
In this theoretical landscape a special position is occupied
by the 1N expansion. As applied to critical phenomena, this P(x)  forx<x*
technique provides a very clear instance of what is to be <P(X)=[O for x> x* 8

understood for a systematic theory: There is a lowest-order

analytically tractable approximatidthe largeN mode) that  \yith x* = J2 and
captures the basic physics and there is an expansion param-

eter (1N) that allows for the systematic computation of the P(x)=1—(1-x3)?, (9)
corrections. The scheme applies successfully also to

quenches to the critical poifi8] and, at first sight, it would while ¢(x)=(x) for all values ofx whenTg=0. Finally,
seem to be applicable as well to the phase-ordering pro-

cesses. Indeed, in the largemodel one can solve exactly Te T <
[8] for the structure factor and one finds that the standard F(x)= x2 for 0<Te<T, (10
scaling form(1) is obeyed for long times with a NCOR]. 1 for Te=0.

In particular one findg=2 anda« is given by Eq.(3) with

n=0. The scaling functions can also be found explicitly | eaving aside for the moment the apparent formal complica-
[10]. Itis to be stressed that in the solution of the model withtion of Eqs.(4)—(10), the important feature that is immedi-
N=co there are nad hochypotheses and the above outlined ately evident is that, contrary to E¢8), now there are three
picture of the asymptotic behavior with scaling, universality, distinct asymptotic behaviors fat-=T,, 0<Tg<T,, and
and temperature fixed points is derived from the solution off_=0. For T-=T, the structure factor obeys standard scal-

the equation of motion.

However, when the model is solved with a CQ#10],
although the form(1) is obeyed witha=2 andz=4 for
Te=T,, for the quenches td-<T. the more general mul-
tiscaling form

C(K,1) ~[L (kL )Z~I/d]a0E (x) (4)

is found, whereL (t)~tY4 k. (t) is the peak wave vector,
andx=k/k.,. The exponent(x) is given by

a(X)=q+e¢(x), 5

with

ing with =2 as in the NCOP case. Instead, T#<<T_ the
exponenta depends orx (Fig. 1) and the scaling fornt4)
involves two Iengthsk,;l(t) and L(t), which differ by a
logarithmic factor/ 8]

(kyL)*=InL%+ (2—d)In(kyL). (11

The functional form ofe(x) is different for O<Te<T. and
Tg=0. This means thal=T. andT=0 are both unstable
fixed points and in between there is a new line of fixed points
for 0<Tg<T.. The temperature below the critical point is
no longer an irrelevant variable.

If the 1N expansion were a good systematic theory, the
1/N corrections ought to produce only minor quantitative
changes on the picture outlined above. However, this expec-
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FIG. 3. Evolution ofa(x) for a NCOP andd=3. (a) T,>T, and(b) Te=T,. Different curves refer to a sequence of time intervals
growing exponentially with the label. In this and all other figures except Fig. 8, very early times are not shown for simplicity.

tation has not been fulfilled by the work of Bray and Huma- path | connecting the disordered stafet the ordered states
yun [11], who found that for quenches 1o-=0 and a COP B. These latter states are mixtures of broken symmetry
standard scaling of the forifl) is restored in systems with states. Ifafter equilibrium has been established the— oo
any finite value ofN. The same result is very likely to apply limit is taken as depicted by path II, the system is brought
also to the quenches to<OT-<T.. Therefore, the main into a stateD that is the mixture of th&— limits of each
qualitative features emerging in lowest order, such as thene of the broken symmetry states. If insteadfhe « limit
multiscaling behavior and the relevance of the temperaturés takenbeforethe quench, the process starts from a disor-
fluctuations, are expected to be a peculiarity of the case witlered stat€ of the system with infinitely many components
N strictly infinite, disappearing as soon as higher-order corand the ensuing dynamical process does not corde&otD
rections are taken into account. In other words, the limitsalong path Ill. As a matter of fact, the process depicted by I
N—o andt—o do not commute for quenches Tg<T.. does not exist. Rather, the dynamical evolution follows path
In this paper we explore in some detail this phenomenon antV leading to low-temperature stat&sthat are quite distinct
we clarify what dynamical process is really described wherfrom D. In other words, the system witih=< supports two
the N—oo limit is taken first. This helps to understand what different low-temperature phases whose realization depends
correct use is to be made of the lafganodel in this area of on the order of the limitd—o~ andN—-oc. The distinction
nonequilibrium statistical mechanics. between these two phases is reminiscent of the difference
The gross features of what goes on in the quenches belobetween the zero-field low-temperature states in the spherical
T. can be described with the help of Fig. 2. The phasemodel[12] and in the mean spherical modé&RB]. In particu-
ordering process of a system with finiieis represented by lar, states are very similar to the low-temperature states in
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FIG. 4. Evolution ofa(x) for a NCOP andi=3 for quenches td ¢ slightly above and slightly below.. Symbols and time intervals
are related as in Fig. 3.

the ideal Bose gas, as it will be clarified in Sec. Il. The pointpreasymptotic behavior of systems with finiké [14,15.

to be stressed here is that in the statld #kpansion state&  Therefore, through the large-model insight can be gained

andB are reached, respectively, from sta@sandD, while  into the very complex time regime preceding the onset of

1/N corrections over statds are not informative on statd&  scaling in realistic systems.

This clarifies why the M expansion can be used for  The paper is organized as follows. In Sec. Il the model is

guenches td ., but not belowT., as an approximation for introduced, the noncommutativity of thte—»o and N—o

processes with finite N limits is clarified, and the nature of the low-temperature
What then is the use of the large¢-model for growth  phases in the larg- model is investigated. In Sec. Il the

kinetics. There is an obvious intrinsic interest once it is cleamumerical solution for the structure factor is presented and

that even though the model does not describe a phaserossovers between different scaling behaviors are analyzed

ordering process of the usual type, the model is well definedby means of the multiscaling analysis. Conclusions are pre-

and describes the relaxation across a phase transition. Tisented in Sec. IV.

growth process generated in the time evolution can be stud-

ied in detail and produces nontrivial behavior. The outcome

is quite interesting since by modulating the initial noise and

the final temperature, remarkable crossover phenomena are . . . .

obtained. Here is where the model gives information also on In the following we consider the relaxation dynam|cs of

systems with finiteN, even if it is not perturbatively close to & System with anN-component order parameteh(x) =

the phase-ordering processes. In fact, the phenomenology (xbl(x) ¢N(x)) that is initially prepared in a high-

the structure factor exhibits features that are also found in thtemperature disordered state and is suddenly quenched to a

Il. LOW-TEMPERATURE PHASES
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3.

lower temperature. The evolution of the order parameter isvhereV is the volume of the systenn, <0, andg>0. The
governed by the time-dependent Ginzburg-Landau model order-parameter probability distribution in the initial state

Ad(X,t)
ot

=—(iV)

can be taken to be of the form

p&H[(Z),N] R

- X, 1), 2
5000 + n(x,1) (12

wherep=0 for a NCOPp=2 for a COP, andy(x,t) is the

Gaussian white noise with expectations

R 1 1 e
Pol #,N]= Z—OeXD{ - ﬂf d9x ¢2(X)]

(15

describing the absence of correlations at high temperature

(n(X,1))=0, ($a(X,0)hs(X 0))=AB,58X—X'). (16)

(Ma(X, 1) (X", 1)) =2Tg(iV)PS,50(x—Xx") 6(t—1"). As mentioned in the Introduction, if one wants to consider
(13 the N— oo limit, in order to determine the nature of the final
equilibrium state attention must be paid to the order in which
theN— o andt— oo limits are taken. Let us consider first the
sequence liR_,..lim;_ ... KeepingN finite, the equation of
motion (12) induces the time evolution of the probability
distribution from the initial form(15) toward the Gibbs state

The free-energy functional is of the form

1 .. r.. g -
§(V¢)2+§¢2+m(¢2)2, (14

H[ $,N]= fvddx



4978

afx)

o(x)

C. CASTELLANO, F. CORBERI, AND M. ZANNETTI

6.0 . |
(a)

40 - T=03 ":::2
- —-—&7
+—+8

2.0 -&W&ﬂﬁﬂgmﬁﬁiﬁgﬁiiﬁiﬁimiﬁﬁﬁgg&H&ﬁ§ﬁ§¥ﬁﬁﬁi—

0.0 : .

0.0 1.0 2.0 3.0

6.0 T .

(b)
-6

4.0 T=10 e
- —p7
+ —~+8

0.0 | EESRIE RN RV FEF R R F RF I RS S U FER RER O RN R RN R PRy A

0.0 ' | - ' -

0.0 1.0 2.0 3.0

X

FIG. 6. Evolution ofa(x) for a NCOP andi=2 for quenches tdz=0.3 andT=10"®. Symbols and time intervals are related as in

Fig. 3.

In the infinite volume IimitPeq[&N] describes a disordered
pure state ifTg is aboveT, and theO(N) symmetrical mix-

- R 1 1 . and B denotes the generic component. Beldw, denoting
P[$,t,N]—=Ped ¢,N]= Zex - T_FH[¢'N] - (17 by m the expectation value Q;()Z) in the broken-symmetry

state, theN— o limit D of the mixture is obtained

Ped 6.1= f dmp(m)u[ |m],

(20

ture of the broken symmetry statesTif is belowT.. If we  \here p(rﬁ) is the uniform probability density over the

now take theN—« limit (path of type Il in Fig. }, for
Tg=T, we obtain the pure phase

- 1
Peqw.oo]:Zexp[ -

1 e s
T <k2+r+gS>¢<k>~¢<—k)],
F ok

pldlm]=d[(p—m)-m]

1
- 2
xzexp{ 7T, E (K>+r+gm?+gS,)

sphere of radiusn and the pure statﬁ[$|rﬁ] is given by

(18)
whereS is given by the self-consistency condition Xy (K)- b, (— E)} : (21
S— EE (ba(K) bs(—K)) (199 Wwhered, = d—(p-m)m. The quantitiesS, andm are de-
VR termined by the self-consistency relations
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1 _ _
Si=y2 (5K dLp(—H0), (22

r+g(m?+S,)=0. (23)

In the end, computing averages with the weight functions
(18) and(20), we find the well-known result of the lardé-

model
Tr
for Te=T
kZ+r+gS ortr=Te
(k) dp(—K)=1 T . (24)
k—§+m25(k) for Te<T,

for the equilibrium structure factor in stat€sandD. The
average value of the order parameter is given by

riTe—T
2 [ F
m2=— | ], 25
§ @
with
7,-- 1472 (26)
© o gKgAT?

where A is a wave-vector cutoff and Ky=
[29- 17921 (d/2)]~ L. The 5(K) term appearing in Eq24),
below T, is the Bragg peak due to ordering in the low-
temperature phade.

Let us now consider the limits in the opposite order. Tak-
ing theN—oo limit at the outset amounts to taking the limit
on the equation of motio12), which becomes effectively
linearized
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ﬁ(ﬁﬁ('z,t) R L with
— = —KkP[K2+R(t)Jpp(k,t) + ng(K,t), (27) R R R
C(k,t)=(p(k,) pp(—K1)). (31
with Taking next thet— oo limit
R(H)=r+gS(t) (28) P[¢,t,2]—Qed 6,]
and 1 ! “1R)A(K) - d(—K
_Zexp[—EZE Ceoq(K)B(K)- B(—K)

1 _ .
vy (2 KUK D). (32
S(0= 52 (@p(kD dp(—KD) (29

we obtain a Gaussian state for any final temperature and it is

Due to the linearity of Eq(27), the time-dependent probabil- |egitimate to ask whether there is still a phase transition.
From Eg. (27) it is straightforward to obtairf10] the

ity distribution is Gaussian
equation of motion for the structure factor

- 1 1 L. L.
P[¢,t,w]——eX% “52 cl<k,t>¢<k>-¢(—k>},
k

Z(t) (kD =—2kP[K2+R()JC(K,t) +2kPTE, (33

(30 at
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which, after equilibration is reached, yields where the sum extends over all valueskdbr a NCOP and
overk# 0 for a COP. We now analyze E¢®6) in the NCOP
- Te case, referring to Appendix B for the modifications in the
Ceq(k) = K2+ g2 (34) argument required by the conservation law. Witliinite the
solution of Eq.(36) for £ is finite for any temperature. As
, expected, there is no phase transition in a finite volume sys-
with a NCOP and tem. In the infinite volume limit Eq(36) becomes
C(k=0t=0) for k=0 _ o 9Te
| ) - rgTeBE 37)
Ceqk)= T . 35
e 2—':72 for k#0 ] ]
k“+¢ where the functiorB(x), defined by
with a COP, where lim...R(t)=¢ 2 is the inverse square B(x)= f &kd% (39)
equilibrium correlation length. From E¢28) (2m)" k“+x

is a monotonical decreasing function fwith a maximum
Q_TFE 1 value atB(0)=K4A9"%/(d—2). In writing Eq. (37) the

E%=r+ - @6 - N -
V T K+¢2 k=0 contribution to the sunt36) has been explicitly sepa-
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rated out. Definingy?=Tg/V£ ™2 and introducing the tem-

peratureT .= —r/gB(0), which coincides with Eq(26), Eq.
(37) can be rewritten as

r(TC—TF
g\ T

with the solution(Appendix B

1

_§—2:

+'y2
g

+Te[B(¢7%)—-B(0)], (39

£2>0, ¥?=0 forTe>T,,
£72=0, y’=0 forTe=T,, (40)
T.-T
£72=0, y2=—r/g( CT F) for Te<T,,
C

which shows the existence of the phase transitiofi.atFor
the structure factor this implies

Te

K

Coglr={ <€ (1)
@ T, Te<T,

and taking into account the forr40) of 72, Eq. (41) is
identical to Eq.(24). Thus, as far as the structure factor is
concerned, the same result is found irrespective of the order
of the limits t—« and N—o. However, comparing the
states,Qeq[J),OO] coincides withPeq[J),oo] aboveT., but

not below, where

#0)
2y2V

- 1
Qeq[¢a°°]: \/mrvex4

1 1 o s s
xzex;{—gz C;ql(k>¢<k>-¢(—k>].
#0



56 CONDENSATION VS PHASE ORDERING IN THE ... 4983

6.0 , . : T

d y(x)
* — %10
- —9o11
1e — 812
- —+13
A —al4
J+ — <15
- -v16

4.0 F A=1 o

dy(x)
1
*+ —+10
- —eo11
= — 812
- —+13
A — 414

r ,!II ’ o XX e X% x»xl—x x—x—x*Bx-x x—l xl—! n—l !_!-! + — 415

i v -v16

2.0 3.0
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This is a state exactly of the same form as the zero-field [ll. SCALING BEHAVIORS
'°W"em_pera“?re state _in the mean spherical model, while In this section we investigate the time evolution of the
stateD is a mlxture as in the s_ph_enpal modék). ._Structure factor by solving numerically the equation of mo-
Thus, despite the formal similarity, the Bragg peaks injon (33, |t is convenient to comment beforehand on the
Egs.(24) and (41) have different physical meanings. In the gicture of this solution. Integrating E(B3), the structure
former case, it signals the formation of a mixture of orderediyctor can be written as the sum of two contributions
states, while in the latter it is due to the macroscopic growth
of the k=0 term in the sum(36). What we have here is a C(k,t)=Co(k,t) + Cr(k,1), (43
low-temperature phase obtained by condensation of the fluc-
tuations atk=0, as in the ideal Bose gas, withe,(k=0)
playing the role of the zero-momentum occupation number. R t
Finally, notice that withd=2 the critical temperature26) Co(k,t):AEXW’ —2kP Jods[szr R(S)]} (44)
vanishes. Hence all states wili:>0 are disordered states
and the limitst—c andN—o commute for the quenches to and
any finite final temperature. Conversel =0 is not a criti-
cal temperature; rather it is an ordering temperature. There- Cr(Kt)=2T kpftdt’ex —2kpftds[k2+R(s)]
fore, the quench tar=0 is an ordering process and the e = Jo t/ '
limits are not supposed to commute in this case. (45
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FIG. 12. Evolution ofa(x) for the solution of the Bray-Humayun model with= 100,d=2, andT-=0: (a) small initial fluctuations and
(b) large initial fluctuations. Different curves refer to a sequence of time intervals growing exponentially with the label.

The asymptotic behavior is analytically accessible and it hadlotice that both contributions are in the scaling foff)

been derived in detail in Ref10]. For quenches ta <T,
with a NCOP, the long-time behavior is given by

Co(k,t)=AL“fo(x), (46)
Cr(k,t)=TeL?fr(x), (47)

with L(t)=tY?, x=KkL, and

4—d forTe=T,

= (48)
d forTe<T,,
fo(x)=e, (49)

fr(x)= ley(l—y)‘w’ze‘xzy. (50)

with Cr(k,t) dominating in the quenches td., while
CO(IZ,t) dominates folf<T.. One may go one step further
regarding the order parameter as the sum of two contribu-
tionsJS: o+ { whose correlations account for the two pieces
in the structure factOICO(IZ,t)=<030B>,CT(IZ,t)=<§B§B),
and(os,)=0. Therefore, forTe<T; a sort of two-fluid
picture of the quench is obtained, with the condensagad
the thermal fluctuationg having a distinct individuality due
to the different scaling properties. Notice that the irrelevance
of the thermal fluctuations is due t® dominating/ and
obeying the zero-temperature equation of motion.

With a COP there is additional structure since the thermal
contribution itself contains two different pieces

. Co(kt) fork<x*km(t)
Cr(k,t)= . . (51)
C>(k1t) fOf k>X km(t)1
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FIG. 13. Evolution ofa(x) obtained in Ref[14] by simulation of a system withil=1, d=2, andTg=0: (a) small initial fluctuations
and (b) large initial fluctuations. Different curves refer to a sequence of time intervals growing exponentially with the label.

with the asymptotic behaviors

Co(k,t)=ALPYX, (52
" _TF 2+ py(x)
Co(k,t)y=— L2, (53
X
. T
C.(kt)=—L2 (54)
X
0 for Te=T,
p={d—2 for O<Tg<T, (55
d for Tg=0.

For simplicity, in writing Egs.(52)—(54) we have neglected
the logarithmic difference betwedn(t) andk,,(t), setting

happens fox<x* and forx>x*. In the first caseC_(k,t)
dominates oveCy(k,t), while in the second case- (k,t)
dominates oveCO(IZ,t). Therefore, with a COP we are led to
regard the order parameter as the sum of three contributions
<Z=5+Z<+f>, which again are characterized by distinct
scaling properties and whose correlations are responsible, re-
spectively, forCo(k,t), C-(K,t), and C-(k,t). The re-
markable qualitative difference with the NCOP case is that
now the condensate also is of thermal origin because the

Bragg peak is formed by. . Hence the temperature is not
an irrelevant variable. Furthermore, the thermal fluctuations

. that obey standard scaling as time goes on propagate
from the large wave vectors toward the small wave vectors,
following a pattern that is important, as we shall see below,
for understanding what happens in the realistic systems. Fi-

nally, thes contribution that was responsible for the conden-
sate with a NCOP here is subdominant, but it can give rise to

x=kL and L(t)=t¥% New behavior arises in the region interesting preasymptotic behaviorsAf and Tr are appro-
0<Tg<T,, where there is a sharp distinction between whafpriately chosen.
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In the numerical study of the structure factor, we shallwhereQ(t) is a function of time and.(t)=t2 Hence we
devote particular attention to the transition from preasymphave the natural choicg,(t) =L(t) and, using Eq(56),
totic to asymptotic features. This we do both for the NCOP
and COP withd=3 andd=2. Parameters of the quench are Q)
the final temperatur@: and the strengtid of the fluctua- a(x == InCq(t)’
tions in the initial statg15). In particular, we will consider
the two casesA=0 (small A) and A=—r/g (large A), which shows that if there is scaling it is of the standard type.
where\/—r/g is the equilibrium value of the order parameter This occurs for long times, whei@(t) = —dInL(t) suggests
at zero temperature. The final temperature of the quench # take L(t)=L(t)=L(t), yielding a(x,t)=d. Con-
important in two respects_ First of all, fd'r':>TC the corre- versely, for short times, iA is small enough to allow for the
lation lengthé is finite, while forTe<T, it is infinite. Thisis  application of the linear approximation, we ha@t) = 2rt
important because the general structure of the time evolutiogind there is no scaling since the time dependence does not
is determined by the relation between a microscopic lengttirop out
L, and the correlation lengté in the final equilibrium state.

The initial fast transient, with no scaling, lasts up to some a(x,t)=— 2rt _
time to. At this point equilibrium is established over the ' InL(t)

length scaleL, and if this is of the order of magnitude &f ) . .
final equilibrium is reached over the whole system as weII.V\_/'th a COP instead, the exact form of the structure factor is
Instead, ifé>L,, a second regime is entergd7], during  9iven by[8]
which the scaling relationgl) and(2) hold. This lasts up to

the timet; such thatL(t,)=¢, when global equilibrium is

again established. Clearly, & is infinite, equilibrium is : _L1/4 :

never reached and the scaling regime lasts forever. The Se\(/:vhere k(1) is the peak wave vectot,(t)=t" ", and i is

- . _ 71 .
ond important feature involving the final temperature is that,glven by Eq.(9). ChoosingL,(t) =k (1), we find

(58)

(59

C(k,t)=Aexp(knL)*¢(k/Kpy), (60)

while for Te=T, only the thermal fluctuations grow, for [k (DL ]*(x)
Te<T, there is growth of both the condensate and thermal a(x,t)=—" InZ.(t ; (G
fluctuations. nLy(t)

o _ which shows that th& dependence cannot be eliminated and
A. Multiscaling analysis therefore that scaling can only be of the multiscaling type.
. . . - : : —d -
The interplay of all these elements produces a rich varietyl his occurs for long times withf 1 (t) = (k3, “L?)™, yielding
of behaviors that can be efficiently monitored through the B
multiscaling analysis. This works as follows. Let us assume a(x,t)=di(x).

tsf;aaﬁi:]hef(s)trmcture factor can be written in the general mult|-Using Eq.(11), the two lengthsl,(t) and £,(t) are related
9 by £1(t)/ L,(t)~ (InL)?M. Conversely, in the very early stage

. . . 71 .
CR)=[L1(D)]*PE(x), 56 where the linear approximation holds(t) =k,,"=—2/r is
(kD=[Ls(0)] (x) (56) time independent and,~tY%, yielding

(62

with x=KkL,(t) and£,(t) and L,(t) two lengths. The func- t
tions a(x) andF(x) are to be determined. In order to check a(X,t)~ — (), (63
on the assumption, the time axis is divided in intervals Int
(ti.ti+ Ti){ which in practice may alsq be of v:31riaple length which displays the absence of scaling through a time-
7, and within each interval the logarithm &f(k,t) is plot- dependent prefactor in front @f(x).
ted against the logarithm af,(t) for a fixed value oix. By
measuring the slope and the intercept of the plpt,t;) and
F(x,t;) are obtained. The procedure is then repeated for dif-
ferent values ok and over different time intervals. H(x,t;) In the following we illustrate the evolution af(x,t) ob-
andF(x,t;) do not depend om the assumptiori56) is cor-  tained numerically over a sequence of time intervals, with
rect and scaling holds. Specifically, standard scaling is thé=—1 andg=1.
case where€,(t) = L,(t) anda(x) does not depend aox In
the case of multiscaling(x) does depend or and the two 1. NCOP d=3
lengths£,(t) and £,(t) differ by a logarithmic factor. Con- Let us begin with a NCOP in three dimensions. The criti-
versely, ifa(x,t;) andF(x,t;) do depend o, scaling does cal temperature is finitd ;=27 and the exponent is ob-
not hold. Notice that in the case that equilibrium has beenained settingl,(t) = £,(t) and extracting this length from
reached, the disappearance of the time dependence showste inverse of the halfwidth of the structure factor. According
asa(x,t;)=0. In the following we shall not be interested in to the general outline presented at the beginning of this sec-
the determination oF (x) and we shall concentrate ar(x).  tion, we expect to detect the establishment of equilibrium for
As an example, consider the quenchTp=0. With a  T->T, through the vanishing of and the scaling behavior

NCOP the exact form of the structure factor is given[BY  lasting indefinitely forT-<T,, through the disappearance of

R the time dependence around a nonvanishing value. dhis

C(k,t)=Aexp{—[Q(t)+ (kL)?]}, (57)  isclearly illustrated in Fig. 3, where is plotted for a quench

B. Evolution of a(x,t)
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well aboveT, with T-=20 and for a quench td.. In the  curves collapse, respectively, @=0 anda=2. In Fig. 7
first case the lines rapidly collapse @n=0, while in the  we illustrate what happens in the quench slightly abduig.
second case the collapse is @& 2. It is then interesting to  7(a)] and slightly below[Fig. 7(b)] T.. In both cases there is
consider the case of a final temperature slightly abbye  a preasymptotic standard scaling behavior with 2 due to
which corresponds to a large but finifeAlso in this casex ~ the critical point in the neighborhood, followed by the incipi-
is expected to collapse eventually ar-0; however, as long ent crossover toward the asymptotic behavior. Abdyéhis
asL(t) is large but smaller thad, one expects to observe a is «=0, as revealed by deviating downward, while below
behavior similar to the one in the quenchTtp. Indeed, this T, the deviation occurs upwardly, for<x*, toward the
is what happens in Fig.(d), obtained by plottinga for  asymptotic form of Fig. 1.

T-=6.35. After the initial transient there is a collapse on Where the difference between the NCOP and COP be-
a=2, revealing critical scaling. However, this does not lastcomes remarkably evident is in the quenches well belpw
indefinitely as in the case of the quenchlig, but it lasts for ~ Let us first conside(Fig. 8) T-=0. After a time-dependent
the time necessary fdr(t) to catch up withé. After this a  transient{Fig. 8@)], which for smallA in the early stage is
new transient sets in and the eventual collapse on the equivell described by Eq(63), the curves ofa(x,t) collapse
librium value a=0 takes place. FOF-<T_ the behavior of [Fig. 8b)] on the limiting curve(62) depicted in Fig. 1.
« is quite similar to the one fof =T, since in both cases Instead, forT-=1 (Fig. 9), the collapse occurs on the finite-
&=, The only difference is that the asymptotic behaviortemperature asymptotic form of Fig. 1, with minor differ-
produces collapse on the value=d=3. For T slightly  ences in the transient due to the size\ofHowever, going to
below T,, e.g., Te=6.20 in Fig. 4b), there is crossover a temperature much lower but fini@ig. 10, while for
from critical scaling witha=2 to the final value witu=3.  A=0 [Fig. 10@] « follows the same pattern as in Fig. 9, the
In general, the asymptotic behavior for<@y<T. and behavior in Fig. 1(b) with A=1 is drastically different.
T-=0 is the samgFig. 5, confirming the irrelevance of What we have here is multiscaling as in the quenchidge 0
thermal fluctuations. In all quenches considered, the variafor x<x* and standard scaling witbk=2 for x>x*. All
tion of the sizeA of initial fluctuations does not produce these features can be accounted for on the basis of the dis-

significant differences. cussion made at the beginning of this section. As long=as
is sufficiently large oA small, as in Figs. 9 and 18), only
2. NCOP d=2 C_(k,t) and C.(k,t) contribute toa(x,t) producing the
In two dimensions the critical temperatu{26) vanishes. characteristic behavior of Fig. 1. However, wh&ns finite
So, for anyTE>0 one should observe a behavior fosimi- and T small enough, there can be a sizable interval of time

lar to the one obtained witd=3 andTz>T.. This is the during which CO(IZ,t) dominates oveC_(k,t), for x<x*,
case for quenches with a final temperature well above zergroducing the scaling pattern in Fig. 0. This behavior is
where behaviors ofr very close to the one in Fig.(8 are  preasymptotic and eventually the crossover to the pattern of

obtained. Similarly, for the quench ®:=0 the same be- Fig. 9 takes place a§_(k,t) grows large enough to over-

hal\lllor asin 'i'%‘_&) is obtained, except that now the lines 5.6 c (K t). In our numerical solution the computation was
collapse one=d=2. not run long enough to actually detect this crossover, but it is

A case to be consi(_JIered separately is v_vTﬁeris finite but  ¢105r that by modulating the parameters of the quekh&nd
very close to zero. Figure 6, correspondingTie=0.3 and T, the crossover time can be varied at will.
Te=10 8, displays an intermediate scaling behavior with

a=2 preceding the eventual collapse on the equilibrium 4, COP =2

Xalu_ea;O. Al flrsr: flghthhISI ltOOkS I'kf the ?eﬂz\”orbgf Fig. It is now interesting to see how this variety of behaviors is
(&) in the quench to a final temperature slightly abdye . affected by pushing the critical temperature to zero in two

Howz_aver, the interpretation is more subtle_ since what 'Simensions. The difference with respect to the previous case
growing here, as long ds(t) <¢, are not the critical fluctua-

tions but the condensate. The distinction between condens's—that now the line of fixed points in betwed =0 andT,

. o S . . ..._Has disappeared and with it, supposedly, also the associated
tion and critical behavior is actually impossible to make with bp » SUPP Y °

. . P asymptotic behavior. Actually, only the fixed pointBt=0
a NCOP on the bags of the v_alue ofsince W|thQ—2 in has survived. Thus we should observe either the relaxation to
both casesvr=2. This remark will become clear with a COP

.equilibrium for Tg>0 or the multiscaling behavior for

because in that case the growth of the critical fluctuations is-"_
associated with standard scaling, while the growth of theiﬁ_aoz' (I)n?seig,sgc;:/;edmg?r;aﬁ[;:g S fﬁgh;z“:éﬁ tT(h; e:c(c)) IlSrF())S-e

condensate gives rise to multiscaling. duces a behavior identical to the one in Fig. 8, except that the
3. COP =3 peak value ofw is given by 2 in place of 3. The interesting

' differences arise when quenches to small but fifliteare

We now move on to the case of a COP with both smallconsidered. In fact, whefig is low & is large and an inter-

and large initial fluctuations. As discussed abowé€x,t) is  mediate scaling regime preceding the final equilibration is
extracted by definingk=k/k,,, where k(t) is the peak expected. The question is what it will be like. FBr=10 °
wave vector, and plotting @ vs InCy(t) with  (Fig. 1) and A=0 there is standard scaling with=2,
Ly(t)= (K3 9L?)Y andL(t)=tY For quenches td-=T,  while for A=1 the pattern is identical to the one in Fig.
the behavior ofa(x,t) essentially follows the same pattern 10(b), except for the obvious modificatioa(x=1)=d=2.
as in the NCOP case. Apart from some differences in th&he first observation is that these are preasymptotic behav-
time-dependent transients, again far>T, and forTg=T, iors since eventuallyr must vanish. The second is that this
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phenomenology can be understood regarding, as long as dik; d%, .. .. .
L(t)<¢, the structure factor as made up of the three contri-D(K,t)= f 2 Wc(k_klvt)c(kl_kZat)C(k21t)-
butions (52)—(54). Namely, as long ad (t)<¢, there is (66)
growth of the condensate and of thermal fluctuations, as in

the quench below the critical point. Thermal fluctuations areontains the nonlinearity ari(t) is given by Egs(28) and
clearly due toTe>0, while the growth of the condensate (g [14]. Although Eq.(43) refers to a quench tdg>0
originates from the underlying fixed point being B#=0.  \yith N= and Eq.(64) to a quench tar=0 andN finite,

A=0is due toC_(k,t) andC-(k,t), which scale both like terms is the same. In particular, in both caggK,t) can
L® sincep vanishes whenl=2. Instead, witlA=1 we are  compete with the second term only far<x*. Bray and

confronted again with a situation where, in the time of theHumayun have shown thaty(K.t) asymptotically obeys

. > . - . N ’
computationCy(k,t) dominates ove€_(k,t) producing the  standard scaling wit=d. It is then clear that by choosing
pattern of Fig. 1@)- As a matter of fact, this is a pre- A andN properly there may be a preasymptotic regime dur-
preasymEtotlc scaling behavior, since whén(k,t) over- ing which Cy(k,t) dominates forx<x*, much in the same
takesCo(k,t) a behavior of the type in Fig. 14) is expected  \yay as in Sec. lIC,(K,t) was found to dominate over

to occur before the eventual relaxation to a vanishing CT(IZ,t). Here 1N plays a role similar to that of¢ and the
crossover time depends on both and N [11,14. With
IV. CONCLUSION N= 100 andd =2 (Fig. 12 a behavior fora(x,t) is obtained

In this paper we have investigated the origin of the nonthat is practically the same of that in Fig. 11. In order to
commutativity of the limits— c andN—c in the dynamics complete the picture, we reproduce in Fig. 13 the behavior of
of the first-order transitions. The main result is that when the?(X,t) for the scalar system obtained in R¢L5] by the
N—oo limit is taken first the underlying phase transition, Simulation of Eq(12) with N=1 andd=2. Again the same
which we have called condensation, is qualitatively differeng®attém is found, revealing that the same mechanism is oper-
from the usual process of ordering obtained with the limits in2ting also in this case. Therefore, one may conclude that the
the opposite order. In particular, condensation in conjunctiofpehavior of the largéd model associated witlCy(k,t) de-
with a COP gives rise, for reasons that are not yet clear, técribes what happens in the preasymptotic regime also in the
two phenomena that are strikingly different from what onephase-ordering processes over the shrinking range of wave
has in phase ordering, namely) multiscaling and(ii) rel-  vectors withk<<x*kp(t). In other words, the asymptotic re-
evance of the thermal fluctuations. We then proceeded to agime is preceded by a time regime where phase ordering
extensive investigation of the scaling properties of the strucover the short length scale seems to coexist with condensa-
ture factor in the larg& model for quenches to a final tem- tion over the large length scale. This is not surprising for a
perature greater than, equal to, or lower tian We have NCOP since correlations are established over regions of size
found a rich variety of behaviors, which can be studied inL(t) and the statistics can be expected to become Gaussian
great detail through the multiscaling analysis. Particularlyover distances larger thar(t). For a COP it is less straight-
interesting is the existence of preasymptotic scaling, whicorward, although the occurrence of Gaussian statistics on
can be explained through the competition between differentarge length scales can be detected much more easily through
components of the order parameter with distinct scalinghe appearance of multiscaling behavior.
properties.

Even though it is quite clear that the larijemodel is not APPENDIX A
perturbatively close to the phase-ordering processes in real-
istic systems, in concluding the paper we wish to elaborate From Eq.(1) the real-space scaling form of the correlation
on the connections that nonetheless exist. In order to do thi$nction is given by
we use the Bray-Humayu(BH) model[11] as an interme- R
diate step. As mentioned above, in this model the structure G(r,t)=r*"9g(r/L(t)), (A1)
factor for the quenches t6=0 with a COP displays stan-
dard scaling for any finite value ®f. The discussion in Sec. whereg(x) is the scaling function and(0) is a finite quan-

Il on the behavior ofa in the quenches tdr=10 © helps tity. Forr<L(t) Eq.(Al) gives the equilibrium decay of the
to understand how this comes about. By integrating formallycorrelation function
the equation of motion, the BH structure factor can be writ-

ten as the sum of two contributions Geq(F)~r“‘d. (A2)
C(k,t)=Cq(k,t)+ Cp(k,1), (64)  On the other hand, the correlation function on a frafta]
decays as
whereCy(k,t) is given by Eq.(44), while
3 Geg(N)~r2°79, (A3)
" 2t Colkt) .
Cn(ki)=— Nkpfodt R(t )mD(k’t ). 85 \yhereD is the fractal dimensionality. Comparing E@3)

with Eq. (A2), the fractal dimensionality of the correlated
with regions is given byd = 3(a+d) and using Eq(3),
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1
§(2+d— n) for Tg=T,

= (Ad)
d for Te<T..
APPENDIX B
1. NCOP
Equation(37) can be rewritten as
_ gT _
£ 2=r+gTeB(0)+ Vg_F2+gTF[B(§ 2)-B(0)]
(B1)
and usingr +gT.B(0)=0,
-2
F=C+TF[B(§’2)—B(0)], (B2
where
r TF_TC> TF
c=—— . B3
g( Te VE? B3)

Since [B(¢ 2)—B(0)] is a nonpositive monotonical de-
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T (Te—T
lim F_2=y2=——( : F). (B4)

2. COP
With a conserved order parameter, E8f) is replaced by

aTr 1
—2_ 2 F &
TN go k2+g 2 59

which allows for a solutio~2> — k2., wherek i,~ Vv~ @

is the minimum value of the wave vector. For

1 1171

R

k0

~ r
TF<TC= - —

g (B6)

the solution is negative- k2. <& 2<0. In the infinite vol-

ume limit T,—T, and £ 2——k2,,. Thus, rewriting Eq.

(B5) as

gTe

EmrrgTeB(E D e

(B7)

creasing function, there is a positive solution of E82) for
c>0, a vanishing solution foc=0, and no solution for e can analyze this equation exactly as in the NCOP case,
¢<0. ForTe<T, the quantityc cannot be positive because obtaining forTe< T, the analog of Eq(B4)

in that casez~2 would be positive and the second term on
the right-hand side of EqB3) would vanish in the infinite-
volume limit, producingc<<0. Thereforec can only vanish,

implying

|. TF 2 r(TC_TF)
im————— =y?=—— :
vV e T gl T
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